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Abstract:
The space of bounded mean oscillations, abbreviated BMO, was first introduced by F. John and L. Nirenberg in
1961 in the context of partial differential equations. Later, C. Fefferman proved that the BMO is the dual space of
well-known Hardy space, popularly known as H1 space and became the center of attraction for mathematicians.
With the help of BMO space, many mathematical phenomenon can be characterized clearly. In this article, we
discuss the connections of function of bounded mean oscillations with weight functions, sharp maximal functions
and Carleson measure.
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1. Introduction

The Lebesgue spaces, popularly known as Lp spaces,
play an important role in Fourier analysis. However,
many important classes of operators are not well
behaved on the Lp spaces particularly in L1 and L∞

spaces. Therefore, L1 is too large to be the domain of
such operators. Similarly, the target space of many
canonical operators exceeds L∞. Consequently, L∞ is
too small to be the range of such operators. These two
spaces are considered as dual of each other in certain
sense. The motivation to find substitutes for the spaces
L∞ and L1 led to the space of bounded mean
oscillations and the Hardy space H1. The space of
bounded mean oscillations is abbreviated BMO space.
The functions of bounded mean oscillation was
originally introduced by F. John and L. Nirenberg in the
context of partial differential equations [1]. This space
naturally arises as the class of function whose deviation
from their means over cubes is bounded. These spaces
turned out to be the ”right” spaces to study instead of
L1 and L∞ respectively. In fact many operators which
are ill-behaved on L1 or L∞ are bounded on H1 and on
BMO. Thus the space of BMO is strictly including the
L∞ space and is a good extension of the Lebesgue
spaces Lp with 1 < p < ∞ from a point of view of
Harmonic Analysis. Thus the space of bounded mean
oscillation turns out to be a natural substitute for

L∞(Rn) in harmonic analysis. Every bounded function
belongs to BMO, but there exist unbounded functions
with bounded mean oscillations. Such a functions
typically blow up logarithmically as shown by the
John-Nirenberg theorem[1]. The relevance of BMO is
attested by the fact that the classical singular integral
operators fail to map L∞(Rn) to L∞(Rn), but instead
they map L∞(Rn) to BMO. Moreover, BMO is the dual
space of the Hardy space H1. This observation was
announced by C. Fefferman in [1] and then proved in
[2]. We can show that every bounded function is in
BMO. This gives that L∞ ⊂ BMO. But there exist
functions which are in BMO but not in L∞. A famous
example for this is f (x) = log|x| which is in BMO(Rn)
but not in L∞(Rn). But BMO is not much larger than
L∞ space. Also BMO scales the same way as L∞: if
f (x) is in BMO then so is f (λx) for any λ > 0 with the
same BMO norm. The space of BMO is much more
needed in the study of various situations such as
boundedness of Calderon-Zygmund operators, real
interpolation, Carleson measure, study of paraproducts
etc. to just name a few. BMO also plays a central role
in the regularity theory for non linear partial differential
equations. In this article, we discuss the relations of
functions of BMO with weight function, sharp maximal
functions and Carleson measure. In order to do this, we
first state some definitions. We begin with the definition
of functions of bounded mean oscillations.
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Definition [Functions of bounded mean oscillations]
A real-valued locally integrable function f (x) defined on
Rn is said to in BMO, the space of functions of bounded
mean oscillation, if for any measurable set Q⊂ Rn, we
have:

sup
Q

1
|Q|

∫
Q
| f (x)− fQ| dx < ∞

where the supremum is taken over all cubes Q in Rn

with sides of the cube parallel to coordinate axes, |Q|
denotes the measure of Q, and where fQ is the average
value of f on the cube Q and is defined as:

fQ =
1
|Q|

∫
Q

f (x) dx

BMO norm a function f, denoted by ‖ f‖BMO, is defined
as:

‖ f‖BMO = sup
Q

1
|Q|

∫
Q
| f (x)− fQ| dx

From the definition, we note that if f,g are two
functions in BMO(Rn) and λ1,λ2 ∈ R, then one can
easily show that the linear combination λ1 f + λ2g is
also in BMO(Rn). This shows that space BMO is a
linear space. Moreover, we also note that

‖f+g‖BMO ≤ ‖f‖BMO +‖g‖BMO

and
‖λ1f‖BMO ≤ |λ1|‖f‖BMO

If ‖f‖BMO = 0, then
∫

Q | f (x)− fQ| dx = 0. Then f has
to be equal to its average fQ on every cube, say
QN = [−N,N]n We note that the cube QN is contained
in Q(N + 1) = [−(N + 1),N + 1]n. This forces that
f(QN) = f(Q(N + 1)). Thus we have if ‖f‖BMO = 0,
then f is a.e. equal to a constant. Consequently, we have
the ‖.‖BMO is not a norm. Note that BMO norm of
constant is zero. This gives f and f +C have the same
BMO norm with C being a constant. In the discussion
that follows after this we take ‖.‖BMO as a norm even
though it is a semi norm when there is no possibility of
confusion.

With the introduction of maximal functions one can
better understand the concept of averages of functions
in analysis. Maximal functions are widely used in
differentiation theory in analysis. Roughly the maximal
function is defined as the largest value of the averages
of functions over all possible balls which contain a
fixed point. Maximal functions appear in many forms.
The most important of these is the Hardy–Littlewood
maximal function. We now define Hardy-Littlewood
maximal function:

Let f ∈ Lp(Rn),1≤ p < ∞.

and
M f (x) = sup

r>0

1
|B(x,r)|

∫
B(x,r)

| f (y)| dy

Then M f is called the Hardy-Littlewood maximal
function of f . In the definition of maximal function, all
the balls are centered at the point x Therefore, this is
centered Hardy-Littlewood maximal function.
Similarly, we can define uncentered Hardy-Littlewood
maximal as:

Mu f (x) = sup
r>0,x∈B

1
|B|

∫
B
| f (y)| dy

Definition [Weight]
A locally integrable function on Rn that takes values in
the interval (0,∞) almost everywhere is called a weight.
So by definition a weight function can be zero or infinity
only on a set whose Lebesgue measure is zero. We use
the notation w(E) =

∫
E w(x) dx to denote the w-measure

of the set E and we reserve the notation Lp(Rn,w) or
Lp(w) for the weighted Lp spaces. We note that w(E)<
∞ for all sets E contained in some ball since the weights
are locally integrable functions.

Definition: A function w(x)> 0 is called an A1 weight
if there is a constant C1 > 0 such that M(w)(x)≤C1w(x)
where M(w) is uncentered Hardy-Littlewood maximal
function. If w is an A1 weight, then the quantity (which
is finite) given by:

[w]A1 = sup
Q cubes in Rn

(
1
|Q|

∫
Q
|w(t)| dt

)
‖w−1‖L∞(Q)

is called the A1 Muckenhoupt characteristic constant
of w or simply A1 characteristic constant of w. We
first begin with the relation between the functions of
BMO and weight function. For more about the weight
functions, please refer [3].

2. BMO and Weight Function

The theory of weights play an important role in various
fields such as extrapolation theory, vector-valued
inequalities and estimates for certain class of non linear
differential equation. Moreover, they are very useful in
the study of boundary value problem for Laplace’s
equation in Lipschitz domains. Some of the theory of
Muckenhoupt’s Ap weights and weighted norm
inequalities results can be used to give characterizations
of BMO function. One of the very important property
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of BMO functions is the John-Nirenberg Inequality
given by the theorem of John-Nirenberg stated as
follows:

Theorem [John-Nirenberg Theorem] For all functions f
in the space of BMO defined on Rn; for all cubes Q and
α > 0, we have

|{x : | f (x)−AvgQ f |> α}| ≤ e|Q|e−Aα‖ f‖BMO

with A = (2ne)−1.

For the proof the theorem, please refer, page 124 of
[3]. An immediate consequence of the John-Nirenberg
inequality is the p-invariance property for any 1 < p <
∞,

‖ f‖BMO ≈ sup
Q

(
1
|Q|

∫
Q
| f (x)− fQ|p dx

) 1
p

Moreover, using the John-Nirenberg inequality, for any
f ∈ BMO, the function e| f (x)|/ρ is locally integrable for
some appropriate constant ρ > 0. Now we note the
following result which can be easily proved: Let V (t)
be a real valued locally integrable function on Rn and
let 1 < p < ∞. Then the function eV (t) ∈ Ap if and only
if two conditions are satisfied for some constant c < ∞.

a. sup
Q

1
|Q|

∫
Q

eV (t)−VQ dt ≤C

b. sup
Q

1
|Q|

∫
Q

e−[V (t)−VQ]
1

p−1
dt ≤C

Using the above relation, one can establish a deep
connection between the weight functions and BMO
functions. Precisely, logarithm of any A2 function is a
BMO function and every BMO function is equal to a
constant multiple of the logarithm of an A2 weight
function. Moreover, we show that logarithm of any Ap

weight function for 1 < p < ∞ is a BMO function. For
more details, please refer [4]. In addition to this
connection, there is another relation between weight
functions and functions in BMO. For this, we recall the
weighted BMO space. Similar to weighted Lebesgue
spaces, one can define weighted BMO space, denoted
by BMOw, as the collections of w locally integrable
functions f such that

‖ f‖BMOw = sup
Q⊂Rn

1
w(Q)

∫
Q
| f (x)− fw,Q|w(x) dx < ∞

In the above definition, we have w(Q) =
∫

Q w(x) dx is
the w-measure of Q and the fw,Q is the weighted

average given by fw,Q = 1/w(Q)
∫

Q f (x)w(x) dx. The
relation between the weights and BMO is that a
function f is in BMO if and only if f is bounded mean
oscillation with respect to w for all w ∈ A∞.
Symbolically, we write BMO = BMOw and the norms
‖ f‖BMOw ≈ ‖ f‖BMO. This relationship was proved by
Muckenhoupt and Wheeden. Please refer [4] for the
detailed proof of these relations.

3. BMO and Sharp Function Operator

In this section, we discuss the relation of BMO and sharp
function operator. We first begin with the definition of
sharp function operator.

Definition:
Let f be a locally integrable function defined on Rn. A
sharp function operator, also known as Fefferman-Stein
sharp maximal operator is denoted by f # or M# f and is
defined as:

f #(x) = M# f (x) = sup
x∈Q,Q⊂Rn

1
|Q|

∫
Q
| f (y)− fQ| dy

where ∈ Rn . In the definition, Q is a cube in Rn with
center at x and sides parallel to the coordinate axes and
fQ denotes the average of f over Q given by
fQ = 1/|Q|

∫
Q f (x) dx. The difference of the sharp

maximal operator compared with the Hardy-Littlewood
Maximal function is that instead of the integral
averages we maximize the mean oscillation over cubes.

From the definition of sharp function operator, one can
show that a function f is a function of bounded mean
oscillation, f ∈ BMO if and only if f # ∈ L∞(Rn). In
other words, we have ‖ f‖BMO = ‖ f #‖L∞ . Moreover,
we note that ‖ f #‖L∞ = 0 if f ≡ constant. Due to this
relation ,we see that an element in the space of BMO is
an equivalence class and two function f and g are equal
in BMO if and only if f − g = constant. Under this
equality, we see that the space BMO(Rn) is a normed
space. Moreover, we can replace the average fQ by any
other constant, say CQ which depends on Q. With this
we have, a function f is in BMO(Rn) if and only if for
any cube Q⊂ Rn, there exists a constant CQ depending
on Q such that :

sup
x∈Q,Q⊂Rn

1
|Q|

∫
Q
| f (x)−CQ(x)| dx < ∞

Also we have “ f ∈ BMO(Rn) if and only if∫
Q | f (x)− fQ(x)| dx < ∞” implies that “ f ∈ BMO(Rn)
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if and only if
∫

Q | f (x)− fQ(x)|p dx < ∞ for 1≤ p < ∞”.
We have ,

1
|Q|

∫
Q
| f (x)− fQ(x)| dx ≤ 1

|Q|

∫
Q
| f (x)| dx+ fQ

≤ 2
1
|Q|

∫
Q
| f (x)| dx

for every cube Q ⊂ Rn. Then by the definition of the
Hardy-Littlewood maximal function f #(x) ≤ 2M f (x)
for every x ∈ Rn. Moreover, by the maximal function
theorem, for every p with 1 < p ≤ ∞, there exists
constant C, depending only on n and p such that:

‖ f #‖p = 2‖M f‖p ≤C‖ f‖p.

This shows that the sharp maximal operator is a
bounded operator on Lp(Rn) whenever 1 < p ≤ ∞.
With the help of constant functions, we see that there is
no point wise inequality to the reverse direction
M f (x) ≤ c f #(x). However, using good lambda
inequalities, we can compare the Lp norms of the sharp
maximal function and the Hardy Littlewood maximal
function under certain assumptions. Even though sharp
maximal operator and Hardy-Littlewood maximal
function are not comparable point wise, they are
comparable on Lp level. This is given by the following
theorem due C. Fefferman and E.M. Stein[5].

Theorem: Let 1 < p < ∞. For every f ∈ Lp(Rn), there
exists a constant Cp independent of f , depending only
on n and p, such that:

C−1
p ‖ f‖Lp ≤ ‖ f #‖Lp(Rn) ≤ Cp‖ f‖Lp

and thus f ∈ Lp(Rn) if and only if f # ∈ Lp(Rn).

Using the above theorem, we can show that if
f ∈ BMO∩L1, then we have f ∈ Lp, for 1 < p < ∞.

There exist many operators T are bounded from Lp(Rn)
to itself for 1 < p < ∞. But this fails for the case p =
1,∞. For counter examples please refer Stein-Weiss [6].
The substitute results for the case 1 and ∞ are T : L1→
L1,∞ and T : L∞,∞ → L∞. The substitute result for the
action of T on the space L∞ is given by T : L∞→ BMO,
since BMO plays the similar role as that of L∞. Finally,
we state a theorem which interpolates Lp and BMO
and is the extension of the Marcinkiewicz interpolation
theorem for the endpoint (∞,∞). For the proof, please
refer [5].

Theorem: Let 1 < p < ∞ and T be a linear operator,
continuous from Lp into itself and from L∞ into BMO

i.e.,

T : Lp(Rn)→ Lp(Rn) and T : L∞(Rn)→ BMO(Rn)

continuously. Then T : Lq(Rn)→ Lq(Rn) continuously
for all p < q < ∞.

For this and more about the BMO and sharp maximal
function, please refer [7].

4. BMO and Carleson Measure

To connect the space of BMO with Carleson measure,
we first recall the definition of cone and non-tangential
maximal functions.

Definition: Let x ∈ Rn. Then a cone over x is given
by Γ(x) = (y, t) ∈ Rn+1

+ : |x− y|< t. Let F : Rn+1
+ →C.

Then the non-tangential maximal function associated to
f is defined as:

M∗F(x) = sup
(y,t)∈Γ(x)

|F(y, t)| ∈ [0,∞]

. For a cube ⊂ Rn, the set given by
T (Q) = Q× (0, l(Q)] is called the tent over the cube Q.
While solving the famous corona problem, Swedish
mathematician L. Carleson [8] obtained the
characterization of all non-negative measures µ defined
on R2

+ satisfying:∫
Q
|Pt ∗ f (x)|2dµ(x, t) ≤ C‖ f‖2

L2(R)

for all f ∈ L2(R). Here Pt ∗ f is the Poisson integral of
f and C is the universal constant.

Now we are state the definition of Carleson measure.
Let us take a particular case of characteristic function
given by f = χ2Q. It is easy to see that (Pt ∗ f )(x)≥C1
for some positive constant C1. Using this in the above
integral inequality, for all (x, t) ∈ T (Q) we have:

C
′
1µ(T (Q))≤

∫
Q
|Pt ∗ f (x)|2dµ(x, t)≤C

′ |Q|

This gives µ(T (Q)) ≤ C|Q|. This motivates the
following defintion of Carleson measure which was
introduced by Carleson in 1960. Please refer [8] for the
details. The Carleson measure is closely related with
the space of BMO.

Definition: A Carleson measure is a positive measure
µ on Rn+1

+ such that there exists a constant C < ∞ for
which µ(T (Q)) ≤C|Q| for all cubes Q in Rn. Here C
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is a universal constant and the smallest of such constant
satisfying the inequality µ(T (Q))≤C|Q| is called the
norm of the Carleson measure and it is given by

‖µ‖= sup
Q

µ(T (Q))

|Q|

In the above definition, we can use ball B(x,r) instead
of cube Q and we can easily show that the these two
definitions are equivalent. We now state the relation
between the space of BMO and Carleson measure. This
relation was established by C. Fefferman. We state the
theorem:

Theorem: The function g ∈ BMO(Rn) if and only if
the associated measure defined on Rn+1

+ by

dµg(x, t) = y|∇u|2(x, t) dx dt

where u(x, t) = Pt ∗g(x) is the Poisson integral of g, is a
Carleson measure.

There is a decomposition theorem given by Carleson in
1976. Please see [5] for details. We revisit the theorem.
Let ϕ ∈C1(Rn) be a radial function which satisfies:

|ϕ(x)|+ |∇ϕ(x)|
(1+ |x|)n+1 ≤C and

∫
Rn

ϕ(x) dx = 1

If h(x) is a compactly supported BMO function, then
there exists a sequence of functions, say

{hi} such that ∑
∞
i=1 ‖hi‖L∞ ≤ C‖h‖BMO with C is a

constant depending only on n. In addition to this, there
exists a sequence {βi} depending only on x such that:

h(x) = h1(x)+
∞

∑
i=2

∫
Rn

ϕβi(x− y)hi(y) dy+C1

where C1 is a constant. Conversely, if a function h has
the above decomposition, then the function

h ∈ BMO(Rn) and the norm of h satisfies:

‖h‖BMO≤C
∞

∑
i=1
‖hi‖L∞

Finally the readers are suggested to refer [6] for more
about the relation between BMO and Carleson measure
and various characterization of the space of functions of
bounded mean oscillations.
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