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Abstract:
Common methods used to determine the solutions for vibration response of continuous systems are assumed
mode method, Rayleigh-Ritz method, Galerkin Method, finite element method, etc. Each of these methods
requires the shape functions which satisfy the boundary conditions. Shape functions derived in most of
the classical textbooks are simple trigonometric functions for some end conditions but are very complex
transcendental functions for many end conditions. It is very difficult to determine the vibration response of
a continuous system analytically by using such transcendental shape functions. Hence this paper presents a
method to develop polynomial shape functions required to solve the vibration of continuous shafts with different
end conditions. The natural frequencies obtained from the developed polynomial shape functions are compared
to those obtained from the classical transcendental shape functions and found very close for the first three
modes.
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1. Introduction

Vibration analysis of any dynamic system begins with
the mathematical modelling of the physical system
under consideration. To develop the mathematical
model of the system, its governing equation of motion
is derived. In case of a continuous system, the
governing equation will be in the form of a partial
differential equation or a system of partial differential
equations. To get the vibration response of any
continuous system, this partial differential equation or a
system of partial differential equations should be solved
by using the associated boundary conditions for the
natural frequencies and the corresponding mode shapes.

When the governing equation of the system is in the
standard form of the partial differential equation (wave
equation, Laplace equation, etc.), we can get the closed
form solutions by using classical mathematical
procedures such as separation of variables,
D’Alembert’s solution, etc. But when the governing
equation is not in the standard form of the partial
differential equation, we should use an appropriate
approximate method or a numerical method. Most

common approximates methods are assumed mode
method, Rayleigh-Ritz method, Galerkin Method, finite
element method, etc. To use these methods, we should
start with the assumption of mode shapes which
satisfies the boundary conditions of the given problem.

Many researchers have analyzed such problems by
taking different types of functions for the assumed
mode shapes. These assumed mode shapes are simple
trigonometric functions in some cases but are also very
complex functions in many cases.

Different aspects of dynamic behavior of continuous
shafts have been studied by many investigators [1-14]
by using trigonomteric shape functions by modelling
the shaft as a simply supported shaft. Zhu and Chung
[15] has studied nonlinear lateral vibrations of
spinnining shaft by using trancendental shape function
by the shaft as a cantilever end conditions. Similalry,
Luintel [16] has compared the critical frequecies of a
simply supported shaft and a shaft fixed at both ends by
using polynomial shape functions.

Using the assumed mode method with the
transcendental functions for the mode shapes is
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relatively complex. Hence this paper presents a method
to develop the polynomial functions for the mode
shapes which can be used in a relatively easier way to
analyze the vibration of a continuous shafts with
different end conditions. To validate the developed
polynomial functions, the natural frequencies obtained
for the different modes are also compared with those
obtained from the classical transcendental mode shape
functions.

2. Mathematical Model for a Continuous
Shaft Rotating at a Constant Speed

2.1 Equation of Motion

Consider a flexible shaft of length L as shown in Figure
1. The axes x, y and z are chosen such that x is along
longitudinal direction of the shaft, y is along transverse
direction of shaft on the horizontal plane and z is along
the transverse direction of the shaft on the vertical plane.
The shaft is rotating about x axis at a constant speed
of Ω. Similarly, transverse displacements of any point
of the shaft along horizontal and vertical directions are
respectively v(x,t) and w(x,t).

Figure 1: Flexible shaft supported by bearings

Then equations of motion of for transvers vibrations
along y and z are given by [16] as:

ρAv̈−ρIsv̈′′−2ρAΩẇ+ρJpsΩẇ′′+

2ρIsΩẇ′′−ρAΩ
2v+ρIsΩ

2v′′+EIsviv = 0
(1)

ρAẅ−ρIsẅ′′+2ρAΩv̇−ρJpsΩv̇′′−
2ρIsΩv̇′′−ρAΩ

2w+ρIsΩ
2w′′+EIswiv = 0

(2)

where ρ is the density of the shaft material, Is is the
second moment of area of the shaft section, A is the
cross sectional area of the shaft and Jps is the polar
moment of inertia of the shaft section.

2.2 Boundary Conditions

Boundary conditions associate with the continuous shaft
systems for different end conditions are given below:

(a) Simply supported shaft

v(0, t) = 0; v′′(0, t) = 0; v(L, t) = 0; v′′(L, t) = 0
(3)

w(0, t) = 0; w′′(0, t) = 0; w(L, t) = 0; w′′(L, t) = 0
(4)

(b) Shaft fixed at both ends

v(0, t) = 0; v′(0, t) = 0; v(L, t) = 0; v′(L, t) = 0
(5)

w(0, t) = 0; w′(0, t) = 0; w(L, t) = 0; w′(L, t) = 0
(6)

(c) Shaft fixed at one end and free at the other end

v(0, t) = 0; v′(0, t) = 0; v′′(L, t) = 0; v′′′(L, t) = 0
(7)

w(0, t) = 0; w′(0, t) = 0; w′′(L, t) = 0; w′′′(L, t) = 0
(8)

2.3 Frequency Equations

Frequency equations for the continuous shaft systems
for different end conditions [17] are given below:

(a) Simply supported shaft

sin(βiL) = 0 (9)

(b)Shaft fixed at both ends

cos(βiL)cosh(βiL) = 1 (10)

(c)Shaft fixed at one end and free at the other end

cos(βiL)cosh(βiL) =−1 (11)

2.4 Trigonometric and Transcendental Mode
Shape Functions

Using the boundary conditions mentioned above, mode
shape functions derived from classical methods [17] for
each end conditions mentioned above are given below:
(a) Simply supported shaft

φi(x) = sin(βix) (12)
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(b) Shaft fixed at both ends

φi(x) =
[
{sinh(βix)− sin(βix)}

+
sinh(βiL)− sin(βiL)
cos(βiL)− cosh(βiL)

{cos(βix)− cosh(βix)}
]

(13)

(c) Shaft fixed at one end and free at the other end

φi(x) =
[
{sin(βix)− sinh(βix)}

+
sin(βiL)− sinh(βiL)
cos(βiL)− cosh(βiL)

{cos(βix)− cosh(βix)}
]

(14)

It can be noticed from Equations (9) and (12) that the
frequency equation and mode shape functions for a
simply supported shaft are simple trigonometric
functions but in case of shaft fixed at both ends and
cantilevered shaft, both the frequency equation and
mode shape functions for a simply supported shaft are
complex transcendental functions as seen in Equations
(10) & (13) and (11) & (14) respectively. Appropriate
numerical method can be used to determine the
approximate solutions of these transcendental
frequency equations. Hence this paper presents a
method to develop polynomial mode shape functions
which can be used to perform vibration analysis of
continuous shafts through semi-analytical approach.

3. Development of Polynomial Shape
Functions

Equations of motion given by Equations (1) and (2) can
be solved by using the Galerkin method or the assumed
mode method. For this, the displacement variables
v(x, t) and w(x, t) can be assumed as:

v = {φ(x)}T{V (t)}= {φ}T{V} (15)

w = {φ(x)}T{W (t)}= {φ}T{W} (16)

where {φ(x)} is the vector of mode shape functions.
Each elements of {φ(x)} should satisfy the boundary
conditions associated with the end conditions of the
shaft and they should be orthogonal to each other.

Since the highest order of derivative in the governing
equation is four, the assumed polynomial mode shape
function should have the order equal to or greater than

4. Hence for the first three modes, the mode shape
functions can be assumed as:

φ1 = x4 +A3x3 +A2x2 +A1x+A0 (17)

φ2 = x5 +B4x4 +B3x3 +B2x2 +B1x+B0 (18)

φ3 = x6 +C5x5 +C4x4 +C3x3 +C2x2

+C1x+C0 (19)

The constants Ai, Bi and Ci are determined by using the
boundary conditions and orthogonal relationships of the
mode shape functions, i.e.,∫ L

0
φiφ j dx = 0 (20)

3.1 Mode Shape Functions for a Shaft with
Simply Supported Conditions at both
Ends

Using boundary conditions given by Equation (3) or
(4), we get boundary conditions for each mode shape
functions as:

φi(0) = 0; φ
′′
i (0) = 0; φi(L) = 0; φ

′′
i (L) = 0 (21)

Using boundary condition defined by Equation (21) for
φ1, φ2 and φ3, twelve equations are obtained and using
orthogonal conditions defined by Equation (20) for φ1
& φ2, φ2 & φ3 and φ3 & φ1, additional five equations are
obtained. Then solving these simultaneous equations,
seventeen coefficients (Ai, Bi and Ci) can be determined
to get the polynomial mode shape functions.

The coefficients of polynomial mode shape functions
for a simply supported shaft are determined as:

A0 = 0; A1 = L3; A2 = 0; A3 =−2L (22)

B0 = 0; B1 =−
1
6

L4; B2 = 0;

B3 =
5
3

L2; B4 =−
5
2

L
(23)

C0 = 0; C1 =
27

682
L5; C2 = 0;

C3 =−
368
341

L3; C4 =
2073
682

L2; C5 =−3L
(24)

Substituting these coefficients into Equations (17), (18)
and (19), the expressions for the first three mode shape
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functions for a shaft with simply supported condition at
both ends are obtained as:

φ1 = x4−2Lx3 +L3x (25)

φ2 = x5− 5
2

Lx4 +
5
3

L2x3− 1
6

L4x (26)

φ3 = x6−3Lx5 +
2073
682

L2x4− 368
341

L3x3 +
27
682

L5x

(27)

3.2 Mode Shape Functions for a Shaft Fixed at
both Ends

Using boundary conditions given by Equation (3) or (4),
the boundary conditions for each mode shape functions
are obtained as:

φi(0) = 0; φ
′
i (0) = 0; φi(L) = 0; φ

′
i (L) = 0 (28)

Following the similar procedure, the coefficients of
polynomial mode shape functions for a shaft fixed at
both ends are determined as:

A0 = 0; A1 = 0; A2 = L2; A3 =−2L (29)

B0 = 0; B1 = 0; B2 =−
1
6

L3;

B3 = 2L2; B4 =−
5
2

L
(30)

C0 = 0; C1 = 0; C2 =
5
22

L4;

C3 =−
16
11

L3; C4 =
71
22

L2; C5 =−3L
(31)

Substituting these coefficients into Equations (17), (18)
and (19), the expressions for the first three mode shape
functions a shaft fixed at both ends are obtained as:

φ1 = x4−2Lx3 +L2x (32)

φ2 = x5− 5
2

Lx4 +2L2x3− 1
6

L3x (33)

φ3 = x6−3Lx5 +
71
22

L2x4− 16
11

L3x3 +
5
22

L4x

(34)

3.3 Mode Shape Functions for a Shaft Fixed at
one End and Free at other End

Using boundary conditions given by Equation (3) or (4),
the boundary conditions for each mode shape functions
are obtained as:

φi(0) = 0; φ
′
i (0) = 0; φ

′′
i (L) = 0; φ

′′′
i (L) = 0 (35)

Following the similar procedure, the coefficients of
polynomial mode shape functions for a shaft fixed at
one end and free at the other end are determined as:

A0 = 0; A1 = 0; A2 = 6L2; A3 =−4L (36)

B0 = 0; B1 = 0; B2 =−
163
91

L3;

B3 =
412
91

L2; B4 =−661182L
(37)

C0 = 0; C1 = 0; C2 =
115
176

L4;

C3 =−
5560
1793

L3; C4 =
305815
57376

L2; C5 =−
9953
2608

L
(38)

Substituting these coefficients into Equations (17), (18)
and (19), the expressions for the first three mode shape
functions a shaft fixed at one end and free at the other
end are obtained as:

φ1 = x4−4Lx3 +6L2x (39)

φ2 = x5− 661
182

Lx4 +
412
91

L2x3− 163
91

L3x (40)

φ3 = x6− 9953
2608

Lx5+
305815
57376

L2x4− 5560
1793

L3x3+
115
176

L4x

(41)

4. Equivalent System Parameters

Substituting Eqs. (15) and (16) into Eqs. (1) and (2) and
applying orthogonality principle, ordinary differential
equations of motion for ith mode for Vi(t) and Wi(t) are
obtained as:

MiV̈i(t)−Ciẇi(t)+KiVi(t) = 0 (42)
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Miẅi(t)+Civ̇i(t)+KiWi(t) = 0 (43)

where Mi, Ci and Ki are respectively modal mass, modal
damping and modal stiffness, are given by

Mi =
∫ L

0
ρAφi(x)φi(x)dx−

∫ L

0
ρIsφ

′′
i (x)φi(x)dx (44)

Ci =
∫ L

0
2ρAΩφi(x)φi(x)dx−

∫ L

0
ρJpsΩφ

′′
i (x)φi(x)dx

−
∫ L

0
2ρIsΩφ

′′
i (x)φi(x)dx

(45)

Ki =−
∫ L

0
ρAΩ

2
φi(x)φi(x)dx+

∫ L

0
ρIsΩ

2
φ
′′
i (x)φi(x)dx

+
∫ L

0
EIsφ

iv
i (x)φi(x)dx

(46)

Using these equivalent parameters, the natural
frequencies corresponding to backward whirl and
forward whirl are respectively given by [16] as:

(λi)1 =

√√√√1
2

[{(
Ci
Mi

)2
+2 Ki

Mi

}
−
√(

Ci
Mi

)4
+4
(

Ci
Mi

)2
Ki
Mi

]
(47)

(λi)2 =

√√√√1
2

[{(
Ci
Mi

)2
+2 Ki

Mi

}
+

√(
Ci
Mi

)4
+4
(

Ci
Mi

)2
Ki
Mi

]
(48)

4.1 Equivalent Parameters for a Shaft with
Simply Supported Conditions at both
Ends

Substituting polynomial shape functions for a shaft
with simply supported conditions at both ends given by
Equations (25) to (27) into Equations (44) to (46),
modal parameters for the first three modes are obtained
as:

M1 =
1

630
(31AL2 +306Is)ρL7 (49)

C1 =
1

315
(31AL2 +306Is +153Jps)ρL7

Ω (50)

K1 =
1

630
(3024EIs−31AL4

Ω
2
ρ−306IsL2

Ω
2
ρ)L5

(51)

M2 =
1

16632
(5AL2 +198Is)ρL9 (52)

C2 =
1

8316
(5AL2 +198Is +99Jps)ρL9

Ω (53)

K2 =
1

16632
(7920EIs−5AL4

Ω
2
ρ−198IsL2

Ω
2
ρ)L7

(54)

M3 =
1

1269788520
(7781AL2+700674Is)ρL11 (55)

C3 =
1

1269788520
(15562AL2 +1401348Is

+700674Jps)ρL11Ω

(56)

K3 =
1

1269788520
(64876656EIs−7781AL4

Ω
2
ρ

−700674IsL2
Ω

2
ρ)L9

(57)

4.2 Equivalent Parameters for a Shaft Fixed at
both Ends

Substituting polynomial shape functions for a shaft
with simply supported conditions at both ends given by
Equations (32) to (34) into Equations (44) to (46),
modal parameters for the first three modes are obtained
as:

M1 =
1

630
(
AL2 +12Is

)
ρL7 (58)

C1 =
1

315
(AL2 +12Is +6Jps)ρL7

Ω (59)
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K1 =
1

630
(504EIs−AL4

Ω
2
ρ−12IsL2

Ω
2
ρ)L5 (60)

M2 =
1

27720
(AL2 +44Is)ρL9 (61)

C2 =
1

13860
(AL2 +44Is +22Jps)ρL9

Ω (62)

K2 =
1

27720
(3960EIs−AL4

Ω
2
ρ−44IsL2

Ω
2
ρ)L7 (63)

M3 =
1

3963960
(5AL2 +468Is)ρL11 (64)

C3 =
1

3963960
(10AL2+936Is+468Jps)ρL11Ω (65)

K3 =
1

3963960
(81432EIs−5AL4

Ω
2
ρ−468IsL2

Ω
2
ρ)L9

(66)

4.3 Equivalent Parameters for a Shaft Fixed at
one End and Free at other End

Substituting polynomial shape functions for a shaft
with simply supported conditions at both ends given by
Equations (39) to (41) into Equations (44) to (46),
modal parameters for the first three modes are obtained
as:

M1 =
1

315
(728AL2−540Is)ρL7 (67)

C1 =
1

315
(1456AL2−1080Is−540Jps)ρL7

Ω (68)

K1 =
1

315
(9072EIs−728AL4

Ω
2
ρ +540IsL2

Ω
2
ρ)L5

(69)

M2 =
1

28693665
(88998AL2+1191685Is)ρL9 (70)

C2 =
1

28693665
(177996AL2 +2383370Is

+1191685Jps)ρL9
Ω

(71)

K2 =
1

28693665
(45901548EIs−88998AL4

Ω
2
ρ

−1191685IsL2
Ω

2
ρ)L7

(72)

M3 =
1

674038100736
(20806950AL2

+943633795Is)ρL11
(73)

C3 =
1

674038100736
(41613900AL2

+1887267590Is

+943633795Jps)ρL11Ω

(74)

K3 =
1

674038100736
(90709550100EIs

−20806950AL4
Ω

2
ρ

−943633795IsL2
Ω

2
ρ)L9

(75)

5. Numerical Results and Discussion

To have comparison of polynomial shape functions and
the resulting critical frequencies with those for the
classical transcendental shape functions for the shafts
with different end conditions, different material and
geometric properties of the shaft are taken as: shown in
Table 1.

Table 1: Parameters of the System

Parameters Value
Density of shaft material,
ρ

7860 kg/m3

Cross-sectional area of the shaft,
A

0.8042 × 10-3 m2

Length of the shaft,
L

0.52 m

Modulus of Elasticity of shaft
material, E

202 × 109 GPa

Area moment of inertia of the
shaft section, Is

5.1472 × 10-8 m4

Polar moment of area of the shaft
section, Jps

1.0294 × 10-7 m4
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5.1 Results for a Shaft with Simply Supported
Conditions at both Ends

Substituting the system parameters into Equation (9),
parameter βi for the first three modes are determined and
the corresponding trimetric functions for the mode shape
aree determined by using Equation (12). Substituting
system parameters, polynomial shape functions for the
first three modes are directly determined from Equations
(25), (26) and (27). The plots of these mode shapes are
shown in Figure 2.

Similarly using Equations (44), (45) and (46),
equivalent mass, damping constant and stiffness of the
system are determined separately for trigonometric and
polynomial shape functions are determined. Then using
these equivalent mass, damping constant and stiffness
into Equations (47) and (48), Campbell diagram is
plotted for both type of shape functions as shown in
Figure 3.

5.2 Results for a Shaft Fixed at both Ends

Substituting the system parameters into Equation (10),
parameter βi for the first three modes are determined
and the corresponding trimetric functions for the mode
shape are determined by using Equation (13).
Substituting system parameters, polynomial shape
functions for the first three modes can be directly
determine from Equations (32), (33) and (34). The
plots of these mode shapes are shown in Figure 4.

Similarly going through the same procedure as used for
the simply supported end conditions, Campbell diagram
is obtained for both type of shape functions as shown in
Figure 5.

5.3 Results for a Shaft Fixed at one End and
Free at other End

Substituting the system parameters into Equation (11),
parameter βi for the first three modes are determined
and the corresponding trigonometric functions for the
mode shape are determined by using Equation (14).
Substituting system parameters, polynomial shape
functions for the first three modes are directly
determine from Equations (39), (40) and (41). The
plots of these mode shapes are shown in Figure 6.

Similarly going through the same procedure as used for
the simply supported end conditions, Campbell diagram
is obtained for both type of shape functions as shown in
Figure 7.

(a) First Mode

(b) Second Mode

(c) Third Mode

Figure 2: Mode Shapes for a Shaft with Simply Supported
Conditions at both Ends
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(a) First Mode

(b) Second Mode

(c) Third Mode

Figure 3: Campbell Diagram for a Shaft with Simply
Supported Conditions at both Ends

(a) First Mode

(b) Second Mode

(c) Third Mode

Figure 4: Mode Shapes for a Shaft Fixed at both Ends
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(a) First Mode

(b) Second Mode

(c) Third Mode

Figure 5: Campbell Diagram for a Shaft Fixed at both Ends

(a) First Mode

(b) Second Mode

(c) Third Mode

Figure 6: Mode Shapes for a Shaft Fixed at one End and
Free at other End
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(a) First Mode

(b) Second Mode

(c) Third Mode

Figure 7: Campbell Diagram for a Shaft Fixed at one End
and Free at other End

It can be noted from Figures 2, 4 and 6 that the
polynomial shape functions obtained from the proposed
method match closely with the classical trigonometric
and transcendental shape functions. The difference
between theses shape functions are negligible for lower
modes and it increases for the higher modes.

Similarly, the critical frequency of the system
determined by using either of the shape function is
same for the stationary shaft. The difference between
critical frequencies for any mode is less for lower speed
and this difference increases with the increase in speed
of the shaft as shown in Figures 3, 5 and 7. Similarly,
the difference between critical frequencies for any
given speed is less for lower mode and this difference
increases for the higher modes.

6. Conclusion

In this paper a method to develop polynomial shape
functions, required to carry out vibration analysis, is
presented. To validate the developed polynomial shapes
functions, they are compared graphically with the
classical transcendental shape function and the
resulting critical frequencies are also compared with
those obtained from the classical transcendental shape
functions for the first three modes. The compassion
shows that critical frequencies are convincingly close at
lower speed. Hence the proposed method can be used
to get dynamic behavior of the system running at low
and moderate speeds.
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